下水道施設の構造特性係数Csの算出

本プログラムの説明

『SS7』の計算結果を2次利用して別途計算を行う事例を示します。 『SS7』の応力解析結果より下水道施設(土木構造物)における構造特性係数Csを算出します。

処理の流れ

計算内容の概略

下図において、線形解析時の応答エネルギーE0 = 非線形解析時の応答エネルギーEe となる (δe , Qe) を求めて、Cs = Qe / Qo を算出します。

Ee=Σ(各ステップの応答エネルギー)

記号	説明
Q	下水道施設部の最下階の層せん断力
δ	下水道施設部の最上階の絶対変位
Qo	線形解析における層せん断力
δο	線形解析における絶対変位
Eo	線形解析における応答エネルギー
Qe	非線形解析における層せん断力
δe	非線形解析における絶対変位
Ee	非線形解析における応答エネルギー

本プログラムの実行方法

python calcs {PATH} {No.} {CASE} {minF} {maxF} {Qo} {Do} [r=0/1/2] [OUTPUT]

オプション	説明
{ }	必須
[]	省略可能

オプション	説明			
PATH	物件データフォルダのフルパス名			
No.	結果セットの番号			
CASE	解析ケース名 (結果ツリー[12.24.Q-δ]の解析ケース名)			
minF	下水道部の最下階 (結果ツリー[12.24.Q-δ]の階名)→層せん断力を取得			
maxF	下水道部の最上階 (結果ツリー[12.24.Q-δ]の階名)→絶対変位を取得			
Qo	線形解析による最下階の層せん断力Qo [kN]			
Do	線形解析による最上層の絶対変位δo [mm]			
r=0/1/2	剛床(省略時:0) 0=主剛床 1=副1剛床 2=副2剛床 (注意事項を参照)			
OUTPUT	結果ファイルの出力先(省略時:PATHと同じ)			

例1

```
cd /d C:\example\src
python calcs "example.ikn" 1 DSX+ B5F B1F 6731.4 3.064 "Other"
```

物件データ	結果セッ ト	解析ケ− ス	最下 階	最上 階	Qo	δο	剛 床	出力先
"example.ikn"	結果1	DSX+ (Ds時X 正)	B5F階	B1F階	6731.4 [kN]	3.064 [mm]		"Other"

例2

```
cd /d C:\example\src
python calcs "example.ikn" 1 DSX+ B5F B1F 3731.4 2.064 r=1
```

物件データ	結果セ ット	解析ケ −ス	最下 階	最上 階	Qo	δο	剛 床	出力先
"example.ikn"	結果1	DSX+ (Ds時X 正)	B5F 階	B1F 階	3731.4 [kN]	2.064 [mm]	副 1	"example.ikn"

ファイル構成

ファイル	内容
calcs.py	メイン
calcs_define.py	共通定義
calcs_prm.py	コマンドライン関連
calcs_ss7.py	『SS7』関連
calcs_cs.py	Cs値の計算と結果出力

結果ファイルの内容

結果ファイルは以下のCSV形式ファイルです。

rgd, bottom, top, step, Qe, De, Ee, Q0, D0, E0, Cs

- 1行目 Csの算定結果
- 2行目以降 1~iステップ目のQe,δe,Ee

列	説明
rgd	剛床名(多剛床のときのみ有効)
bottom	下水道施設部の最下階名
top	下水道施設部の最上階名
step	ステップ数
Qe	非線形解析のQe[kN]
De	非線形解析のδe[mm]
Ee	非線形解析のEe[kN・mm]
Q0	線形解析のQ0[kN]
D0	線形解析のδ0[mm]
EO	線形解析のE0[kN・mm]
Cs	構造特性係数Cs

注意事項

- 『SS7』Ver.1.1.1.19を前提としています。別のバージョンに変更するには、 calcs_ss7.py のコメント「# SS7のバージョン」の行で "1.1.1.19" を変更してください。
- 物件データは応力解析(二次)まで解析済みにしてください。自動的に解析を行いません。
 (理由:弾塑性解析の性質上、解析に時間を要することが多いため)
- 旧バージョンの物件データを自動的にデータ変換および再計算しません。
 (理由:バージョンの違いによる解析結果の差異,入力データの保護)
- 線形解析の値 Qo, δo は別途計算してください。
 - 例:

『SS7』で Co=二次設計の値として弾性解析を行う 層せん断力Qoは地震力の計算結果から取得 絶対変位δoはG+Pと地震時の節点変位(重心位置)から取得

- コマンドラインの指定 "r=0/1/2" は以下の場合、無視されます。
 多剛床の指定が無い
 計算条件[5.8.地震荷重 多剛床の地震力] "全体をまとめて外力分布を求める" を選択
- Q-δ曲線に乱れが生じた場合(不釣り合い力解除に支障が発生した場合)を考慮していません。

『Op.Python実行』の設定手順

Ss7Pythonライブラリを使用するための設定手順です。

- 1. 『SS7』を起動し、 [ツール 環境設定 Op.Python実行]画面を表示します。
- 2. "利用可能なPython言語のバージョン"を選択し、 [デスクトップへコピー]ボタンをクリックします。
- 3. デスクトップにある「Python」フォルダごと、「src」フォルダにコピーします。
- 4. (必要な場合は)「Python」フォルダ名を「OO」に変更します。

必要な外部ライブラリ

外部ライブラリは不要です。

著作者

Copyright (C) 2024 UNION SYSTEM Inc.

ライセンス

本プログラムは MIT License に基づいています。「LICENSE」を確認してください。