# 計算条件等を変更した複数の計算結果を含む『SS7』デ ータを作成する

#### 本プログラムの説明

『SS7』の結果を検証するため、計算条件等を変更した複数の計算結果(最大5)を含む『SS7』データを作成します。

『SS7』の入力データCSVファイルを使用し、以下の例のように変更したい項目の「行」「列」「変更後の値」を result\_paramsというリスト(配列)で指定します。

各要素の並びについては、後述の「本プログラムの実行方法」や「main.py」内のコメントを参考にしてください。

(例1)

最大ステップ数を151~154ステップに変更した結果を作成します。

|      | А        | В       | С      | D     | E | F    | ( |
|------|----------|---------|--------|-------|---|------|---|
| 990  |          |         | Y加力    | 軸圧縮破壊 | 柱 | 1    |   |
| 991  | Ds算定時の定義 | 層間変形角   | 重心(1/n | X加力時  |   | 10   |   |
| 992  |          |         |        | Y加力時  |   | 10   |   |
| 993  |          |         | 最大(1/n | X加力時  |   | 10   |   |
| 994  |          |         |        | Y加力時  |   | 10   |   |
| 995  |          | 最大ステップ数 | 正加力    | X加力時  |   | 9999 |   |
| 996  |          |         |        | Y加力時  |   | 9999 |   |
| 997  |          |         | 負加力    | X加力時  |   | 9999 |   |
| 998  |          |         |        | Y加力時  |   | 9999 |   |
| 999  | P-Δ効果の考慮 | X加力時    |        |       |   | 1    |   |
| 1000 |          | Y加力時    |        |       |   | 1    |   |

result\_params = [ [(995, 6, "151")], [(995, 6, "152")], [(995, 6, "153")], [(995, 6, "154")],

1

1

(例2)

荷重増分解析方法を「1(弧長法)」または「2(Newton-Raphson法)」、 増分量の分割方法(X方向・Y方向)を「1(等分割)」または「2(等差級数分割)」と変更した、 すべての組合せの結果を作成します。

|     | А       | В               | С     | D   | E    |
|-----|---------|-----------------|-------|-----|------|
| 978 | 保有水平耐力時 | X加力時            |       |     | 1    |
| 979 |         | Y加力時            |       |     | 1    |
| 980 |         | 木質混合階の保有水平耐力の定義 | 主体構造な | が木造 | 1    |
| 981 |         |                 | 主体構造な | が木造 | 1    |
| 982 | 荷重增分解析方 |                 |       | 1   |      |
| 983 | 荷重增分量   | 推定崩壊荷重の倍率       | X加力時  |     | 0.25 |
| 984 |         |                 | Y加力時  |     | 0.25 |
| 985 |         | 推定崩壊荷重までのステップ数  | X加力時  |     | 20   |
| 986 |         |                 | Y加力時  |     | 20   |
| 987 |         | 増分量の分割方法        | X加力時  |     | 1    |
| 988 |         |                 | Y加力時  |     |      |

result\_params = [

[(982, 5, "1"), (987, 5, "1"), (988, 5, "1")], [(982, 5, "1"), (987, 5, "2"), (988, 5, "2")], [(982, 5, "2"), (987, 5, "1"), (988, 5, "1")], [(982, 5, "2"), (987, 5, "2"), (988, 5, "2")], (例3)

移動荷重として、集中荷重の作用位置[mm]を変えた結果を作成します。

それぞれの位置(P2, P4, P6)は、

結果1(2000, 4000, 6000)、結果2(3500, 5500, 7500)、結果3(5000, 7000, 9000)とします。



#### result\_params = [

1

[(3100, 5, "2000"), (3100, 7, "4000"), (3100, 9, "6000")], [(3100, 5, "3500"), (3100, 7, "5500"), (3100, 9, "7500")], [(3100, 5, "5000"), (3100, 7, "7000"), (3100, 9, "9000")],

#### 本プログラムの実行方法

- 1. 元となる『SS7』の入力データCSVファイルを「src」フォルダにコピーします。 そのCSVファイルを開いて、変更したい項目の行・列を確認します。
- 2.「main.py」を編集して、必要なパラメータを設定します

| 変数            | 説明                                                           |
|---------------|--------------------------------------------------------------|
| csv_name      | 作成元の『SS7』入力データCSVファイル名                                       |
| version       | 『SS7』のバージョン番号("1.1.1.19"など)                                  |
| calc_item     | 解析する計算項目(NULLはすべての計算項目を実行します)                                |
| result_params | 変更する「行」「列」「変更後の値」をセットで並べます。<br>行は計算結果の数(最大5)、列は変更箇所の数(可変)です。 |

3. コマンドラインからプログラムを実行します。
 例) C:に「example」というフォルダ名で配置する場合

```
cd C:\example\src
python main.py
```

4. 「src」フォルダに複数の計算結果を含む『SS7』データ(入力データCSVファイルと同名.ikn)が作成されます。 『SS7』で開いて検証等にご利用ください。

# 注意事項

- 本プログラムは『SS7』Ver1.1.1.19で動作確認を行いました。
- 同じ計算条件等の設定項目であっても、行や列は入力データCSVファイルごとに異なる場合があります。毎回確認してください。

## 『Op.Python実行』の設定手順

Ss7Pythonライブラリを使用するための設定手順です。

- 1. 『SS7』を起動し、 [ツール 環境設定 Op.Python実行]画面を表示します。
- 2. "利用可能なPython言語のバージョン"を選択し、 [デスクトップへコピー]ボタンをクリックします。
- 3. デスクトップにある「Python」フォルダごと、「src」フォルダにコピーします。

# 必要な外部ライブラリ

外部ライブラリは不要です。

## 著作者

Copyright(C)2024 UNION SYSTEM Inc.

# ライセンス

本プログラムは MIT License に基づいています。「LICENSE」を確認してください。