『Super Build[®] / SS7 Op.免震部材』 告示免震物件での利用の流れ

1. 『SS7』でのモデルデータの入力・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・P.3	
2. 『IsolationPRO』での支承材・減衰材の配置 ・・・・・・・・・・P.5	
3. 『IsolationPRO』での告示計算結果確認 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
4. 『SS7 Op.免震部材』での入力 ・・・・・・・・・・・・・・・・・・・・・・・・・・・P.11	
5. 『SS7 Op.免震部材』での結果確認 ・・・・・・・・・・・・・・・・・・・・・P.21	
6. 『SS7』での上部架構の結果確認 ・・・・・・・・・・・・・・・・・・・・・・・P.29	
7. まとめ ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	

目次

1. 『SS7』でのモデルデータの入力

〇【SKビル】

注:減衰材を配置するために「2a」通りを作成し大梁配置しています

1. 『SS7』でのモデルデータの入力

○建物概要・設計目標

- ・ 建物用途 : 事務所ビル
- ・ 建物階数 : 5階建て
- ・X方向 : 3スパン(外部階段のため5スパンで作成)
- ・Y方向 : 2スパン(外部階段のため4スパンで作成)
- ・構造種別 : 鉄筋コンクリート造 (外部階段はS造)
- ・ 免震層 : 天然ゴム系積層ゴム・すべり支承 鋼製ダンパー・鉛ダンパー・オイルダンパー
- ・設計目標 : 応答変位 0.45(45cm)未満 偏心率 0.03未満

※『実例でまなぶ・建築数量積算』建設工業経営研究会発行 "SKビル新築工事"を建物モデルとしています。

2. 『IsolationPRO』での支承材・減衰材の配置

○【免震層の応答変位】

告示計算の結果						
免震層の応答変位	免震層のせん断分担率、接続	泉周期および地震層せ	ん断力	免震層の偏心率	の算定	層せん断力係数
		標準時	(-)8寺	(+)時	設計値	判定
地域係数Z		1.0	1.0	1.0		
重要度係数I		1.0	1.0	1.0		
総質量M(t)		1740.6	1740.6	1740.6		
免震層の設計限界変化	立ôs(m)	0.238	0.238	0.238		
等価剛性K(kN/m)		8663.0	6621.9	11265.8		
設計限界固有周期Ts	(s)	2.816	3.221	2.470		
表層地盤による加速度	の増幅率Gs	1.230	1.230	1.230		
履歴曲線の面積∑(⊿)	Wi) (kN•m)	690.2	517.7	856.7		
∑(Wi) (kN•m)		246.2	188.2	320.1		
弾塑性系の減衰定数h	d	0.178	0.175	0.170		
免震層の等価速度 Ve	q(m/s)	0.532	0.465	0.607		
流体系の減衰材の減衰	₹係数 ΣCvi(kN•s/m)	600.000	450.000	750.000		
流体系の減衰定数hv		0.077	0.066	0.085		
減衰による加速度の低	减率Fh	0.422	0.439	0.422		
応答変位の計算に用い	たFh	0.422	0.422	0.422		
免震層に作用する地震	力Q(kN)	1641.1	1434.8	1871.5		
基準変位∂(m)		0.189	0.217	0.166		
代表変位♂'r(m)		0.189	0.217	0.166		
応答変位ôr(m)		0.208	0.238	0.183	0.238	≦0.238 (∂s) OK

○【免震層のせん断分担率、接線周期および地震層せん断力】

VERCEVVICE SCIET			JUNE ON AND T	*/#/C	A C / VC// JIAXX	
	標準時	(-)時	(+)時	設計値	判定	
層せん断力の計算に用いたFh	0.422	0.439	0.422			
免震層に作用する地震力Q(kN)	1641.1	1495.0	1875.2			
基準変位♂(m)	0.189	0.226	0.166			
減衰部の負担せん断力Qh(kN)	759.5	572.0	944.9			
弾性部の負担せん断力Qe(kN)	1040.8	953.5	1222.8			
免震層の基準速度 V'r(m/s)	0.885	0.890	0.911			
免震層の応答速度 Vr(m/s)	0.928	0.933	0.955	0.993		
ε×流体系の負担せん断力(kN)	0.0	0.0	0.0			
流体系の負担せん断力Qv(kN)	531.2	400.3	682.9			
免震層のせん断力分担率μ	0.061	0.047	0.076	0.061	≧ 0.03 OK	
免震層の接線剛性KT(kN/m)	5493.8	4223.3	7346.7			
免震層の接線周期TT(s)	3.537	4.034	3.058	3.537	≧ 2.5 OK	
免震層の地震層せん断力Qiso(kN)	1877.0	1577.1	2272.7	2272.7		
免震層の地震層せん断力係数Cro	0.110	0.092	0.133	0.133		

○【免震層の偏心率の算定】

100 告示計算の結果						×
免震層の応答変位 免震層のせん断分担率、接線周期	明および地震層せ	ん断力	免震層の偏心率	の算定	層せん断力係数	
	標準時	(-)時	(+)時	設計値	判定	
╳-重心座標Xg(m)	9.319	9.319	9.319			
Y-重心座標Yg(m)	6.992	6.992	6.992			
X-剛心座標Xk(m)	9.456	9.412	9.475			
Y-剛心座標Yk(m)	6.932	6.947	6.908			
X-偏心距離eX(m)	0.060	0.045	0.084			
Y-偏心距離eY(m)	0.137	0.093	0.156			
ねじり剛性KT(kN·m)	598000	461000	784000			
X-弾力半径reX(m)	8.306	8.346	8.342			
Y-弾力半径reY(m)	8.306	8.346	8.342			
X-偏心率ReX	0.007	0.005	0.010	0.007	≦ 0.03 OK	
Y-偏心率ReY	0.016	0.011	0.019	0.016	≦ 0.03 OK	

○【層せん断力係数】

免震層の原	的答变位 免疫	震層のせん断分	担率,接線周期制	らよび地震層せ	ん断力
階	階高(m)	層重量(kN)	Ai分布	Ori	Qi(kN)
5	3.200	843.4	2.636	0.258	217.
4	3.500	2554.8	1.751	0.190	646.
3	3.500	2807.8	1.476	0.169	1050.
2	3.500	2937.7	1.305	0.156	1429.
1	4.000	3073.1	1.171	0.146	1785.
ISO	2.800	4853.1	1.000	0.133	2272.

○【Sa-Sd関係図】

■設計限界値 [0.238m,1578.7kN]
●基準変位 [0.217m]
▲応答変位 [0.238m]
◆(設計限界値) [0.238m,2685.8kN]
▼(基準変位) [0.166m]
×地震層せん断力 [2272.7kN]

○『SS7 Op.免震部材』で、支承材・減衰材の配置を行います。

700 減衰材 (大梁配置)	×
ビ 図 函 基 1 x 写 感 回 察 ジ ジ ジ ジ ジ ジ ジ	1.「17.免震-17.4.減衰材(大梁配置) で"減衰材"の登録を行います。
5 6 7 8 9 10 10 11 12 13 13 14 び グンパーの位置 -0500 [mm] 反転	2."減衰材"としては、以下の3種類です。 ・U型鋼製ダンパー・・・1種類 ・U型鉛ダンパー・・・・1種類 ・オイルダンパー・・・・1種類

ē	▶ 減衰材 (大梁配置)											
(H)												
配置装置 Qh												
1	製 品											
		種別	シリーズ	製品								
	D1	U型鋼製ダンバー 🔹	*日鉄エンジニアリング	NSUD_R_0594	NSUD40Rx4							
	D2	U型鉛ダンバー	*住友金属鉱山シポレックス	SSLD	U2426							
	D3	オイルダンバー *カヤバシステムマシナリー		BDS100-L-0	BDS1 001 400-L-0							

○『SS7 Op.免震部材』で、支承材・減衰材の配置を行います。

○『SS7 Op.免震部材』で、支承材・減衰材の配置を行います。

※ 解析モデルについて(支点の状態)

計算は"免震層"と"上部構造"を分離して扱います。 支承材を配置した位置には、鉛直方向ばねが自動でセットされます。 鉛直方向ばねの剛性は、配置した支承材の鉛直剛性とします。 また、支承材を配置していない節点には「支点」を生成しません。

免震部材が大梁の中間に取り付く場合、取付位置に自動で節点を生成し、 1本の部材を複数に分割します。

○『SS7 Op.免震部材』で、計算条件の指定を行います。

○『SS7 Op.免震部材』で、計算条件の指定を行います。

※ 付加曲げ [Pδ]・「Qh」補足説明

○『SS7 Op.免震部材』で、計算条件の指定を行います。

				× 加力時	¥ †	山力時	
 許容限界変位の載り 	110			 Ltato 	(■した()	
◉ 直接指定[mm]				○ * z) + z	
× 加5	カ時 、	/ 加力時		090		999	
正加力	238	238	r5	5. 上部構造の降伏一			
負加力	238	238		⊖しない			
※設計変位に達した時点	で自動的()	「解析を終了しま	す。	 কর 			
				× #e.v+ rp.tml = + +] /_ <u>67</u> ±⊂	(タフレ) キオ	
○ Olieoとの比率 EN質気	7 比率=0.	n / Qien		※ 肥性飯 暖した 場	房台は脾竹	診了としま 9	•
0 0 00000000000000000000000000000000000		57 6150	L_6	,解析終了条件――			
—————————————————————————————————————	カ時 ヽ	/ 加力時				支承材	減賣材
<u>止加力</u>				許容限界変位に	達する	2	2
具加刀		1.0000		許容限界速度に	達する		
◎設計変位時の○。を通	接指空间	NÎ	1	許容限界曲線に	達する		
				引張力が生じ	る		
× 加5	カ時 ヽ	/ 加力時		<1>6245をフトッ	づまる	くつう 角朶末氏	を続ける
正加力 2	272.7	2272.7		NIZ MENICAL Z	230	12/ 11/1	C 1040 0
	272.7	2272.7		最大ステップ	粒	×加力時	又加力時
				正加力	**	10000	1 0 0 0 0
の、変位増力里	L			負加力			
設計変位はじの人ケッフ象	V	+					
X加刀時 100	Y70738	守 100					
増分量の分割方法 ―							
X加力時	Y加力B	寺					
● 等分割	() 等	分割					
○ 等差級数分割	() 等	差級数分割					

1.「17.1.免震計算条件」で「2.解析一次」 の項目、「1.設計変位」では"直接指定"と し、『IsolationPRO』で告示計算した結 果の応答変位【238】mmを入力します。 (本資料: P.6参照)

2.「2.ベースシアQoの算定」は、設計変位時のQoを直接指定"を選択し、
 『IsolationPRO』で告示計算した結果より免震層のQiso【2272.7】kNを入力します。(本資料: P.7参照)

○『SS7 Op.免震部材』で、計算条件の指定を行います。

2019 免費計算条件 ×	
・ 一般析共通 2. 解析一次 3. 解析二次 1 4. 解析二次 2 5. 各種検討 8. クライテリア 7. 入力スペクトル ・ 上線小輪力検討用係数 ・ 公本 ・ 全部の ・ 全部力の検討 ・ 全部方 ・ 全部方 ・ 全部方 ・ 全部方 ・ 会かる ・ とない ・ する ・ とない ・ する ・ しない ・ する ・ 会のる ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・	 1.「17.1.免震計算条件」で「5.各種検討」の項目、「4.免震層の偏心率の検討」では "する"とし偏心率の制限値を"0.03"としま す。また、計算方法は"基準解説書"を選 択します。 2.「5.接線周期の検討」で"する"とし、接線 周期の制限値を【2.50】と入力します。
○ 22+1/Hat OK ++2/2// ヘルプ	

4. 『SS7 Op.免震部材』での入力 ○『SS7 Op.免震部材』で、計算条件の指定を行います。 一日日本 1. 解析共通 2. 解析一次 3. 解析二次1 4. 解析二次2 5. 各種検討 6. クライテリア 7. 入力スペクトル 1. 「17.1.免震計算条件」で「2.告示スペ ┌1. 告示スペクトルの割増・ -3. 表層地盤によるGsの計算 クトルの低減」で"直接指定"を選択し、 地域係数 1.00 ○地盤種別より計算 1.00 用途係数 ○第1種地盤 【0.255】を入力します。 ● 第2種地盤 -2. 告示スペクトルの低減・) 第3種地盤 等価粘性減衰定数 h (本資料:P.10参照) ○ 最終ステップのh ○表層地盤の卓越周期と増幅率より計算 0.255 直接指定 1.230 Tg1[秒]: 9.999 Gs1 Tg2[秒]: 9.999 1.230 Gs2 直接指定 1.230 Gs : ※本画面の入力は「荷重変形関係図」に参考値として表示する入力スペクトルの計算条件です ※計算結果に影響しませんが、変更した場合は「応力解析」からの再計算となります。 本画面の入力は「荷重変形関係図」に参考値として表示する 入力スペクトルの計算条件です。 ОK キャンセル ヘルプ 19

○『SS7 Op.免震部材』で、計算条件の指定を行います。

🗐 外力分布の設定					
 1. 一次設計用 ○変更しない ● 層せん断力分布で直接入力 ○水平外力分布で直接入力 	 □ 二次設計用 ● 変更しない ● 層せん断力分布で直接入力 ● 水平外力分布で直接入力 				
OK	キャンセル ヘルプ				
■ 層せん断力分布の値 る ● ● ● ● ● ● ● EX+ ● ● ● ● EX+ ● ● ● EX+ ● ● ● EX+ ● ● EX+ EX+ EX+ EX+ EX+ EX+ EX+ EX+ EX+ EX+	i接入力 ー ○ × 主開床 分布係数 217.2 646.5 1050.9 1429.8 1785.9 2272.7				
全消去	閉じる へルプ				

- 1. 「17.9.外力分布の変更」の「17.9.1. 外力分布の設定」で"層せん断力分布 で直接入力"を選択します。
- 2.「17.9.2.層せん断力分布」で、「一次 X正」・「一次X負」・「一次Y正」・「一次 Y負」のすべてに、『IsolationPRO』の結 果のQiを入力します。 (本資料: P.9参照)
- 3. すべての条件を入力すれば、解析を行い ます。

5. 『SS7 Op.免震部材』での結果確認

○『SS7 Op.免震部材』で、解析結果の確認を行います。

- 5. 『SS7 Op.免震部材』での結果確認
 - ○『SS7 Op.免震部材』で、解析結果の確認を行います。

5. 『SS7 Op.免震部材』での結果確認

○『SS7 Op.免震部材』で、解析結果の確認を行います。

3. 「16.5.限界曲線図」を確認します。

- 5. 『SS7 Op.免震部材』での結果確認
 - ○『SS7 Op.免震部材』で、解析結果の確認を行います。
 - 4. 「16.6.免震層の重心剛心図」を確認します。

- 5. 『SS7 Op.免震部材』での結果確認
 - ○『SS7 Op.免震部材』で、解析結果の確認を行います。
 - 5. 「16.11.免震部材の断面算定(一次)を確認します。 「16.11.3.1.支承材」を確認します。

5. 『SS7 Op.免震部材』での結果確認

○『SS7 Op.免震部材』で、解析結果の確認を行います。

6. 「16.11.免震部材の断面算定(一次)」を確認します。 「16.11.3.3.減衰材」を確認します。

符号	層	76-4	軸 -	一軸	種別 変形					速	度		
						ケース	δD	δA	検定比	ケース	٧D	٧A	検定比
							mm	mm			mm/s	mm/s	
D1	Z01	A	3	4	U型鋼製ダンバー	L+Ex	238	550	0.44				
D2	Z01	2	В	C	U型鉛ダンバー	L+Ex	238	800	0.30				
D3	Z01	В	1	2	オイルダンバー	L+Ex	238	700	0.34	L+Ex	1163	1250	0.93

5. 『SS7 Op.免震部材』での結果確認

○『SS7 Op.免震部材』で、解析結果の確認を行います。

7. 「16.14.免震層の性状」の「16.14.1.偏心率」を確認します。

Ľ	免震層の偏心	來 - 結果4									_	· [] >
B		🖨 🗟 🖻) 🔁 🗗 💕)									
結果	4 ~ EX+E	Y+ 🖂 🔨	×										
	重心		剛心		偏心距離		水平剛性		ねじり剛性	弾力半径		偏心率	
	gx	gy	рх	ру	еx	еy	Kx	Ку	KK	rex	rey	Rex	Rey
	m	m	m	m	m	m	kN/mm	kN/mm	kNm∗10^3	m	m		
	9.320	7.078	9.225	6.987	0.095	0.091	10.375	10.375	739	8.438	8.438	0.011	0.012

8. 「16.14.3.接線周期・等価周期」を確認します。

\square	免震層の	— C] >								
🗈 🐁 🛃 🚛 📾 🔂 🔁 🕄 🕲											
結果	₹4 ~	~ ^ ^ ^	/								
	ケース	М	Keq	Teq	Kt	Tt					
		t	kN/mm	sec	kN∕mm	sec					
	EX+	1741	10.375	2.57	7.117	3.10					
	EX-	1741	10.375	2.57	7.117	3.10					
	EY+	1741	10.375	2.57	7.117	3.10					
	EY-	1741	10.375	2.57	7.117	3.10					
-	Eï-	1741	10.375	2.57	7.117						

- 5. 『SS7 Op.免震部材』での結果確認
 - ○『SS7 Op.免震部材』で、解析結果の確認を行います。
 - 9. 一次設計時の解析を「弾塑性解析」にすることにより、免震層のQ-δ曲線で 告示応答スペクトルとの対応を確認することが可能です。

- 6. 『SS7』での上部架構の結果確認
 - ○『SS7』で、上部架構の解析結果の確認を行います。
 - 1. 免震層による付加曲げを考慮した結果、上部構造が満足しているかの確認を 行います。

- 6. 『SS7』での上部架構の結果確認
 - 『SS7』で、上部架構の解析結果の確認を行います。
 - 2. 付加曲げを考慮することで、Cフレームの基礎梁がNGとなっています。 断面変更・配筋変更をする必要があることが分かります。

7. まとめ

- ・『IsolationPRO』を利用することで、『SS7 Op.免震部材』の解析に必要 な入力情報(応答変位やベースシア係数など)を得ることが可能。
- ・『SS7』のマウス入力で、免震層の支承材や減衰材の配置が簡単に行える。
- ・設計変位の確認や、偏心率の確認、支承材や減衰材の断面算定結果
 も簡単に確認することが可能。
- 免震による付加曲げを考慮することで、上部構造への影響を確認することが可能。